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Abstract

The near-zero (microgravity) environment of orbiting spacecraR minimizes buoyant flows, greatly simplifying

combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven

forces and flows. Fundamental combustion understanding has greatly benefited fi'om analyses and experiments

conducted in the microgravity environment. Because of the economic and commercial importance of combustion in

practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper

reviews selected technology developments to illusWate some emerging applications. Topics cover improved fire-safety

technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion,

applied sensors and conlrols for combustion processes, and self-sustaining synthesis techniques for advanced materials.

INTRODUCTION

Combustion reactions are the dominant mode of energy production for u-ansportation,electric power

generation, industrial furnaces, and habitat heating. Combustion is the principal reaction in the creation of many

commodities, such as the refining of metals or the synthesis of plastics and ceramics. Combustion is also essential to a

wide range of industrial operations, including process heating, pollution conU'ol, waste incineration, cutting, brazing,

and welding.

Access to the non-convective, microgravity environment in orbiting and ballistic-majectory spacecraft or in

ground-based, free-fall facilities has proven to be highly advantageous for combustion research (Law 1994), In

microgravity, buoyancy-induced flows are nearly eliminated, permitting the isolation of normally obscured forces and

flows, the creation of simplified symmelries (isolated fuel particles, for example), and the expansion of experimental

time and length scales without disturbances (NASA 1995).

SELECTED MICROGRAVITY COMBUSTION TEST RESULTS

Analytical and experimental microgravity-combustion research conducted over the past three decades or more

has investigated combustion in a wide variety of systems, such as premixed and diffusing gases, liquid droplets and

pools, solid surfaces, and mixed phases (NASA 1995). Three combustion phenomena are highlighted in the following

sections to illustrate promising sources for practical applications.

Solid-Surface Combustion

Fire-safety technology for spacecraR can benefit from the knowledge of ignition and flame spread along solid

surfaces. In a microgravity environment, ignition may readily occur, but the resulting flame may not propagate because

of the lack of induced flow of oxygen into the flame zone. Space experiments have demonstrated this self-

extinguishment for fires initiated over certain surfaces, such as wire insulations or thick materials (Greenberg 1994,

Rygh 1995). On the other hand, experiments on thin fuels (paper) show that slow but uniform flame spread is possible

in quiescent microgravity (Olson 1988). In all of these fire situations, however, the addition of low-speed forced-air
flows (i.e., spacecraft ventilation) can increase the flammability and rate of flame spread. Forced-flow flame-spread

rates may be comparable to, or even exceed those in normal gravity (Olson 1988).

The microgravity flame appearance also differs from that associated with conventional, normal-gravity

combustion. Typically, the microgravity flames are larger, dimmer, and stand off further from the fuel surface,



compared to their normal-gravity counterparts (Grayson 1994). Other distinguishing features of microgravity flames in

gaseous, liquid, and solid-phase systems are described in the literature (Law 1994, NASA 1995, Ramachandra 1995).

Investigators report that, in many instances, microgravity flames in quiescent, standard-air conditions are so pale that

they are difficult to observe (Rygh 1995). Visibility is greatly enhanced under conditions of forced-air fows or high-

oxygen concentrations, where microgravity flames are typically brighter and yellow in color. The vis_le appearance of

theincipientfireisone ofthe"signatures"usedfortheremotedetectionoffiresand foralarmcriteria.

Droplet Combustion

Combustion of sprays of liquid droplets is a common process in propulsion systems and power-generating

equipment A thorough understanding of this combustion process is important for analyses and modeling to promote
designs with efficient combustion and reduced exhaust emissions. The isolation of droplets for research is very difficult

on Earth because of the motions and distortions caused by the buoyancy-induced flows and forces, and such studies

must be limited to relatively small droplets. In rm'crogravity, near-spherical droplets can be generated and maintained

for idealized studies of their ignition and flame behavior. The range of microgravity droplet-combustion research

covers the burning of pure- and multi-component fuel droplets, in single, double, and multiple-droplet arrays, and in

quiescent or low-speed air-flow environments. Most important, the microgravity environment permits the generation,
isolation, and observation of representative droplets, as large as 2 to 6 mm in diameter (NASA 1995).

Typical burning droplets appear quite different in quiescent and forced-flow microgravity. The quiescent

droplet is surrounded by a soot shell and a concentric flame. The soot shell may not be visible under forced flow.

Hydrocarbon-droplet combustion initiates with bright, sooty flames, which become less luminous with time. The flame

luminosity increases with forced air flow, similar to the phenomena observed with solid-surface flames. Disruptive,

almost explosive, burning is noted for bi-component mixtures with greatly differing component volatility. This

behavior results from the expansion of the more volatile fuel as a "oubble" through the shell of the less volatile fuel

(NASA 1995).

Soot Formation

Soot is an aggregate of solid, carbonaceous pyrolysis- and combustion-product particles. Soot has a high

radiative emissivity, and it substantially increases the vis_ility of_ and the radiative transport from, flames. Hence,

bright, sooty flames are desirable for efficient energy extraction in furnaces and power equipment. In conCast, soot-
enhanced radiation is undesirable in film-cooled propulsion systems, causing decreased life in jet-engine combustion

liners, for example.

Due to minimal buoyant motion, soot residence times in the microgravity combustion zone are relatively long;

and, consequently, soot-particle concentration and morphology vary from these characteristics in normal gravity.

Microgravity gaseous and liquid-droplet flames, even in quiescent environments, are often sootier than in normal

gravity (Choi 1993, lto 1994). Microgravity conditions greatly aid the isolation and collection of soot particles.
Statistical analyses of particles collected from burning wire insulations indicate that both primary soot particles and

their aggregates are several times larger in microgravity than in normal gravity (Paul 1993).

The differences in soot evolution and charafteristics in microgravity have practical significance not only for

power and pollution applications but also for fire safety through smoke detection. For optimum sensitivity and false-

alarm rejection, smoke detectors are tuned for the expected particle-size distribution. Obviously, the setpoints for

spacecraft smoke detectors can differ from those of typical terreslrial smoke detectors. Studies are now in progress to
examine the response and alarm requirements of spacecraft smoke detectors based on typical incipient-fire scenarios

anticipatedinspacecra_operations(Urban 1995).

SURVEY OF COMBUSTION APPLICATIONS AND OPPORTUNITIES

The applicationofcombustionfundamentalsfoundthroughmicrogravityresearchtocommercial

opportunities is the focus of a new NASA initiative (Friedman 1996). A brief overview of the potential application
areas follows.



Fire Safety

Current spacecraft fire-protection designs and operations are based on terrestrial standards and testing,

although there is a growing awareness of the need to apply microgravity-combustion knowledge to improve and

optimize spacecraR fire safety (Friedman 1993). Certain fire scenarios have some probability of occurrence in
spacecraft (Friedman 1992-3). For example, thermally stressed components may be prone to overheating and ignition,

since the near-absence of natural-convective flows in microgravity greatly reduces air cooling. Again, aerosol clouds or

fluid leaks may persist in the atmosphere as potential fire hazards, since settling and dispersion are very slow. Finally,

smoldering, a low-temperature non-flaming reaction, may initiate readily in the absence of natural convection in

spacecraR.

The first line of spacecraft rue-safety defense is in prevention, through strict material selection, low electrical-

wire current ratings, fusing, and electrical grounding. Material-acceptance tests are presently conducted in normal

gravity to provide a "worst-case" simulation to spacecraft conditions. Recent research indicates, however, that this

safety factor may not always apply. Some materials and ventilation conditions have been shown to promote flame

spread in microgravity at rates that equal or exceed those in reference normal-gravity environments (Olson 1988, Tien

1990). The evaluation of material flammability in microgravity on any practical scale is, of course, impossible. Thus,

one aim of microgravity-combustion research is to develop models and correlations of normal-gravity to ventilated

microgravity fire-spread resistance useful for construction of databases of acceptable materials for spacecraft service.

Microgravity research may also assist the development of commodity materials with improved fire and

pyrolysis resistance. One example is polytetrafluoroethylene (PTFE) polymer, which is widely used as a wire
insulation in spacecraR and aircraft. The degradation of FIFE upon overheating generates toxic gases and ulffafine

particles that are hazardous to the lungs (Todd 1993). New formulations of this polymer that may resist this

degradation are under investigation.

The second line of fire protection is the detection and suppression of incipient fires. In Shuttle operations to

date, five minor overheating events have occurred, none progressing to flaming fires. In aU cases, the breakdowns were

detected by the senses of the crew and promptly alleviated (Friedman 1992-3). Modem spacecraR are also equipped
with automatic smoke detectors, which are adaptations of standard terrestrial designs. Studies of smoke density and

soot characteristics from microgravity fires are in progress to improve the sensitivity and alarm criteria for space smoke

detectors. These studies may also prove valuable for improved designs and operational criteria in terreslrial smoke

detectors, in their ability to isolate, collect, and analyze smoke constituents.

None of the reported rue-threatening events in U.S. spaceflight missions required active fire suppression. Fire

extinguishers are carried on all current human-crew spacecraft, nonetheless. The Shuttle has both portable and

remotely actuated fire extinguishers, charged with Halon 1301. Most of the inhabited modules of the International

Space Station, now in construction, will be equipped with portable fire extinguishers charged with carbon dioxide.

Exceptions are the Russian cabins, which carry a mixed-phase foam agent, and the decompression-lxeatment chamber,
which may carry nitrogen. SpacecraR fire-suppression system designs and operations most likely could be standardized

if research daxa were available on optimum physical dispe_ion, suppression effectiveness, and post-fire cleanup in

microgravity Suppression experiments with adequate time and physical scales to demonswate practical fire control are

in the plalmiug stages.

New fire suppression agents must be developed for both space and terres_-ial applications that have: 1) low

atmospheric ozone-depletion potential; 2) low global-warming potential; 3) low toxicity; and 4) the potential,

preferably, to be a "drop in" replacement for Halons (similar vapor pressure, viscosity, etc.). One interesting alternative

under investigation is a new use of old technology: water, formed into a very fine mist (Tapscott 1995).

Combustors

One of the goals of current NASA research in aeropropulsion combustion is the reduction of emissions from

gas turbines (Lyons 1993, Ziemianski 1993). The control of exhaust pollutants such as oxides of nitrogen, carbon



monoxide, unburned hydrocarbons, aerosols, and soot requires an in-depth knowledge of the physics and chemiscy of

combustion processes. Microgravity research offers new insights in combustion science in may fimdamental ways,

including the mechanisms of droplet combustion and soot formation. Application of this information can be used to
assist in the design of fuel injectors for low-emission combustors. Experimental data can be used directly to determine

fuel-spray effects on emissions, or they can validate advanced combustor codes to aid future design efforts. Of
particular interest currently is supercritical droplet combustion, which has application to high-pressure combustors in

both rocket motors and advanced aircraft engines.

Other combustion technologies can be linked to potential microgravity-combustion-science research. Particle

coalescence and agglomeration can be studied in a simplified flow field in microgravity, where drag can be decoupled

from other parameters affecting growth. A better understanding of the particle-formation process may increase the

collection efficiencies of electrostatic precipitators for submicron particles. The combustion of tiny suspended coal

particles in a microgravity environment can enable the study of the major processes involved in producing fly ash.
Microgravity, which allows a surface-initiated reaction to Wansition to a homogeneous reaction without the interference

of buoyancy, will also aid the study of catalytic combustion, a useful means of reducing emissions from many combus-

tion systems. Also, the use of combustion synthesis to create new, uniformly-porous materials, a subject to be discussed

later, will promote the development of improved catalytic subswates.

An indirect application of microgravity-comhnstion research is that of an apparatus developed for the study of

premixed conical flames in upward and downward gravity and in microgravity _ 1995). A stabilizing ring was

invented to maintain an extremely lean flame for the visualization studies. This patented device is now available for

commercial license as a residential and industrial gas-burner component, permitting stable, efficient combustion at lean

fuel-air ratios for greatly reduced NOx emissions CKostiuk 1996).

Sensors and Controls

The application of measurement techniques derived in space studies to scientific and commercial purposes on

Earth is among the recognized benefits of the space program. The latest NASA Spinoffmagazme, for example, cites a

number of products, such as optical and radiation sensors, computer enhancement techniques, strain gages, and fiber-

optic transmitters, all derived directly or indirectly from spacecraft instrumentation (Haggerty 1995).

Microgravity-combustion research has promoted advances in diagnostic techniques, primarily because of the

need for non-perturbing, rapid-response measurements of flame appearance, velocity, temperature, and chemical spe-
cies in severe environments. The observation of flames often requires image enhancements because the flames are

barely visible or weakly radiant. Drop-tower experiments require small, rapidly responding yet rugged insmunentation

capable of withstanding large deceleration forces upon recovery at the conclusion of the drop test. Space-based

experiments need small, reliable, light-weight insmunentation.

The commercial development of diagnostic techniques derived from microgravity-combustion research

promises benefits to other applications such as aircraft or automotive-engine insmunentation. A recent survey of

imaging methods describes a wide variety of promising technologies (Weiland 1995). One product _ is now entering

commercial production is a line-absorption-spectroscopy instrument originally developed for microgravity chemical-
species measurements and tested in ground-based microgravity facilities. The inslnunent is now promoted as an on-

line analyzer for industrial smoke control.

Advanced Materials

Material processing in spacecraft is already a well established field, with recognized potential for commer-
cialization (Bayuzick 1988, Whitten 1995). The non-buoyant environment promotes the study and application of

physical processing, with such benefits as precise phase separations, homogeneous compositional cunu'ol, uniform large

crystal growth, and containerless processing.

The predominant role of combustion in material syntheses and processing is certainly recognized, but the wide

range of potential applications (and the influence of gravity) is often overlooked. Combustion synthesis, for example,



isthebasisforthe commercial production of many commodity and reagent gases, powders, ceramics, plastics, and

coatings. Gravity is inherent in these processes, enhancing or inhibiting the actions of contacting devices, scrubbers,

separators, and heat and mass exchangers. Even small-scale microgravity-combnstion studies can aid the understanding

and improvement of these operations by idealizing the systems, simplifying the analysis of reactions and modeling, and

by aiding the evaluation of alternative or innovative techniques.

lhe current thrust in microgravity-combustion applications relative to material syntheses obviously

concenuates on methods yielding products of high unit value, such as advanced ceramics, intermetallics, or fullerenes.

As an example, one can cite the progress in self-propagating high-temperature synthesis (SHS) (Merzhanov 1993). The

SHS process is based on highly exothermic, self-sustaining reactions for the efficient production of many refractory,

high-strength, and specialized ceramic, alloy, and composite materials from metal-powder reagents. In normal gravity,

the SHS reactions, which generate high temperatures and fluid phases, are prone to gravity-driven flows, density

gradients, and product segregation. Microgravity offers an environment free from these disturbances, enabling the

analysis and optimization of the processes (Hunter 1994). Microgravity experiments can verify analytical predictions,

and they can lead to a better understanding of the kinetics of the reaction and the phase control of the products.

Potential products obtained by SHS reactions may include ceramic fibers and whiskers, porous materials for

filters and medical implants, glasses, as well as monolithic intermetallics. An interesting illustration of heterogeneous

materials produced by SHS and the influence of gravity on the product morphology is seen in the work of A.S.

Shteinberg of the Russian Institute of Structural Macrokinetics. In this study, titanium carbide is formed as a "foam"

product through unconstrained expansion during the reaction from the elements. Regardless of the reaction orientation,

gravity forces inhibit the expansion. In microgravity, a fully expanded, homogeneous porous product is obtained.

Particle synthesis in flames also offers the promise of low-cost manufacturing of non-oxide powders, such as

uniform silicon-carbide particles. This effort could be linked to the study of ash formation in combustion processes.

CONCLUDING REMARKS

The non-convective, microgravity environment associated with orbiting spacecraft offers advantages for

research that have greatly increased the fundamental knowledge of combnstion science. Because of the great economic

importance of combustion processes in practice, there is strong motivation to pursue the commercial applications of the

research findings. Examples of technology developments now actively underway and described in this paper, include

spacecraft and terresUial fire safety, combustors for use in propulsion and power systems, applied sensors and controls

(including diagnostic instrumentation), and advanced materials developed with self-propagating high-temperature

synthesis (SHS).
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